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The K-N s-wave scattering lengths and effective-range parameters have been calculated for both isotopic 
spin states, using the N/D method. The nearby part of the interaction cut has been approximated by two 
poles, whereas following Balazs' procedure the entire distant cut has been replaced by two effective-range 
poles at predetermined positions, but with unknown residues. The residues of the effective-range poles are 
determined by matching the N/D amplitude with that calculated with a fixed energy dispersion relation, at 
two properly chosen points. In calculating the latter amplitudes only the contributions of A, 2, Fi*, p, and co 
exchange terms are retained and the values of Fi*, p, and co coupling constants are taken from a unitary sym
metry scheme. The calculated values of scattering length, effective range, and low-energy phase shifts for the 
1=1 state are in good agreement with the experimental results of Goldhaber et al. For the 1 = 0 state, the cal
culated phase shifts are consistent with the large s-wave solution of Goldhaber et al. 

1. INTRODUCTION 

FOLLOWING Balazs' work,1 a number of investi
gators2-4 have successfully applied the effective-

range two-pole approximation for the distant cross-
channel singularities in the N/D analysis of meson-meson 
and meson-nucleon scattering. The immediate ad
vantage of this approximation scheme is that it does not 
introduce any arbitrary parameters into the theory. The 
present paper is devoted to the study of kaon-nucleon 
s-wave amplitude using the aforementioned technique. 
We choose to work in the s plane following Singh and 
Udgaonkar.2 

In Sec. 2, we mention the singularity structure of the 
partial wave amplitude in the s plane. In Sec. 3, the 
N/D amplitude has been set up. The short A, 2 cuts 
have been replaced by two poles whose positions and 
residues are obtained from the discontinuities across 
these cuts. Moreover, all other interaction singularities 
have been approximated by the two effective-range 
poles and their positions have been chosen a priori. 
Thus, the N function effectively contains only four 
simple poles. The residues at the two effective-range 
poles are determined by matching the N/D amplitude 
with that calculated with a fixed-energy dispersion rela
tion. The latter amplitude is given in Sec. 4. The N/D 
amplitude being thus determined, we have calculated in 
Sec. 5 the s-wave scattering length, the effective range, 
and the low-energy phase shifts and compared them 
with experimental data. 

2. SINGULARITY STRUCTURE 

In addition to the unitarity cut extending over the 
entire physical region, the K-N partial-wave amplitude 
has the following singularity structure in the s plane: 
(1) Short cuts extending from [_(MN

2-MK
2)/MK,?,Y*J 

to 2{MN2-\~MK2) — MA,S,7*2 corresponding to the ex
change of A, 2 , and A-x resonances in u channel. (2) 
Short cuts extending from (MN2—MK2) to (MN2+MK2 

*L. A. P. Balazs, Phys. Rev. 128, 1939 (1962). 
2 V. Singh and B. M. Udgaonkar, Phys. Rev. 130, 1177 (1963). 
3 V. Singh and B. M. Udgaonkar, Phys. Rev. 128, 1820 (1962). 
4 S. K. Bose and S. N. Biswas, Phys. Rev. 134, B635 (1964). 

11/2 - WP,«J) + i [ (4W ~MP,^)(4:MK2 - MP,„J)J 
and a circular cut of radius (MN2~MK2) around the 
origin, arising from the exchange of various pion reso
nances in t channel. (3) The distant cut extending over 
the entire negative s axis, to which all the exchange 
processes mentioned above contribute. (4) A cut along 
the entire negative s axis and possibly a pole at the 
origin arising from the kinematics. 

3. DETERMINATION OF THE N/D AMPLITUDE 

We use the standard normalization for the s-wave 
amplitude,5 i.e., 

/o+ = expi5o+ sin5o+A > (*) 

and write it in the N/D form 

W-0(s) = N^(s)/D^(s), (2) 

where D(s) contains the unitarity cut and N(s) contains 
all the interaction singularities. The superscripts 1 and 0 
refer to the two isotopic spin states. In calculating the 
effect of the short interaction cuts only the contribution 
from A and 2 exchange has been considered,6 whereas 
the contribution of all other interaction cuts as well as 
the kinematic singularities are approximated by the two 
effective-range poles. 

TABLE I. Positions and residues of the two nearby poles. 

m The total 
isotopic spin 

I 
Pole 

position Residues 

1 
18 
45 

18 
45 

0.42 
-0 .29 

0.83 
-0 .50 

5 S. C. Frautschi and J. D. Walecka, Phys. Rev. 120, 1486 
(1960). For the relation of fo+(s) with the invariant A and B 
amplitudes, see Eqs. (2.21), (2.22), and (2.23) of Ref. 5. 

6 The contribution of the short A, 2 cut turns out to be much 
smaller than that of the effective-range poles so that our result 
will not differ appreciably from what a two-pole effective-range 
approximation alone would predict. 
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The contribution of the 2-exchange term to the s-wave amplitude is given by 

'l\gK2N2(Z(sll2+MNy-MK2T.sll2+M2-2MN1 ( 2s[2{MN
2+M^)-M^2-s'} /i\gKXN2il(sll2+MNr-MK2±s^+Ms-2MN_\ ( 2sl2{MN-i+MKi)-Mi>-s] \ 

/o+r:1'°W= ) Qo(l+ r ) 

rs] / 2SZ2(MN
2+MK2)-M7?-S~] \ | 

] \ ls-{MN+MKyi.s-(MN-MK)2y\' 

[_{s"i2-MN)2-MK
2T.sm+2MN-M^] l 2s[_2(MN

2+MI?)-Mi?-s1 
f- Qx [ 1 + — , (3) 

[s- (MN+MK)2TS~ (MN-MK)2~] ~ - - - - - - — - -

where gK?N is the rationalized pseudoscalar coupling constant, Qi(x) are the Legendre functions of the second kind 
and the multiplicative factors 1 and 3 correspond to the isospin 1 and 0 states of the s-wave amplitude. /<n_A:1'°(s) 
is obtained from (3) on replacing gum and Ms by gxAAr and MA, respectively, and setting both the isospin factors 
equal to unity. This gives for the short 2 cut, 

Abs/<H.s^°(s) = 0 l \ (-gK^2) |C(^1 / 2+M^)2-Mx2]C^1 / 2+M s-2M^] 

16 1 ls-{MN-MKyT.s-(MN+MKy] 
V[Ny-MK

2J_sll2+2MN-M^]/ 2s{_2 {MN
2+MK2)-MJ-S~} \ 1 

fN-MKyj.s- (MN+MK)21 \ 0 - {MN-MK)2T_s- (MN+MK)2y J ' 

and a similar expression for Abs/ofA:1'° (5). unitary symmetry, if the latter is applied to the 
The short A and 2 cuts are almost overlapping. The pseudovector coupling constants and the pseudoscalar 

length of this cut is about half its average distance from coupling constants are treated as phenomenological 
threshold. Moreover, the absorptive parts have opposite parameters. 
signs over two more or less equal regions of the cut, so Then following Frautschi and Walecka5 the effective 
that a single-pole approximation would not be adequate, pole positions are fixed near the maxima of the absorp-
Hence, a two-pole approximation has been made for the tive parts in the two regions mentioned above and the 
short A, 2 cut to account for the contributions from the residues are evaluated as the integrals of the absorptive 
two regions of the cut, where the absorptive parts have parts over corresponding regions. The values are given9 

opposite signs. Following an analysis of iT+-photo- in Table I. 
production data by Moravscik7 we have set both The approximate positions of the two effective-range 
gKiN2/^ and gKAN2/^ equal to unity. It is realized poles are determined by the procedure suggested by 
that unitary symmetry when applied to pseudoscalar Balazs.1 The values are —20 and —500. Thus, the s-
meson-baryon coupling strengths would suggest values wave amplitude fQ+

l>°(s) can now be expressed as a sum 
for the K-A and K-2 coupling constants of the same of four pole terms and an integral over the unitarity cut. 
order as the w-N coupling constant. But, as suggested Then following (2), the N(s) function is expressed as a 
by Sakurai,8 it is still possible to get to the experimental sum of the effective pole terms and D(s) as an integral 
values of gxzN and gKAN within the framework of over the unitarity cut. This gives 

/0.42\ 1 /0.29\Z>(45) /.RA 1 /R2
1\ 1 

W'°(s) = ( ) ( ) - ^ + ( ) +( ) , (5) 
\0 .83A-18 \0 .50 /s -45 VjRiV^+SOO VR2%+20 

where the D(s) function has been normalized to unity at s= 18. The subtracted dispersion relation for D(s) reads 

D^(s) = l / dsf-7T J (MN+MK)2 (Sf — S)(s'— 18) 

s-18 p [> ' - (MN+MK)2Jl2Ls'- {MN-MK)2Jl2Nl>»{s') 
= 1 / fo' . _ _ # (5) 

The above integral equation can be solved10 for ,?= 45, and substituted into (5) so that the N(s) and D(s) functions 
7 M. Moravscik, Phys. Rev. Letters 2, 352 (1959). 
8 J. J. Sakurai, Proceedings of the International School of Physics, Varenna, Italy, 1963 (unpublished). 
9 All the numerical values are in pion-mass units unless mentioned otherwise. 
10 For evaluating the right-hand-side integral of Eq. (6), we haveapproximated q by i [ l — (MN — MK)2/2sf^[_sr~ (JWAT+^X) 2] 1 7 2 . 

Since the minimum value of s' in the region of integration is {MN+MK)2, the error introduced by neglecting the higher order 
terms is less than 1%. 

file:///0.83A-18
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are obtained in terms of the only two unknown residues i?i and i£2. These residues are now determined by matching 
the N/D amplitude against the amplitude obtained from fixed-energy dispersion relation at two points on the 
singularity-free region of the s axis. The matching points are chosen at s~9Q and s= 104. 

4. FIXED-ENERGY DISPERSION RELATION 

The fixed-energy dispersion relation satisfied by the invariant amplitude A (syt,u) is 

RA RZ r AU(U') rAt{i')dt' 

A(s,t,u) = — + + / du'+l . (7) 
MA2—U M^—U J(MA+i)2 u' — u J4 t' — t 

A similar relation holds for B(s,tyu). Using (7), we calculate A(s,t,u) by assuming that the uf and t' integrals are 
exhausted by the contributions from their low-lying resonating states,11 i.e., Fi*(1385), p, and co. B(sytyu) is similarly 
calculated. With A and B so obtained, we can easily calculate the s-wave amplitude /o+C?). This has the form 

/<H-1^) = /<H> :1 '^) + / ^ (8) 

The A, 2 contributions are given in (3). The Fi* contribution is given by 

l\S*ri*tf* f l(s^+MN)2-MK
2J_X+ {s"2-MN)Y~] ( 2s[2{MN

2+MK
2)-MYlJ-s^ 

QJ 1 + 

3/ 8TT 1 [_S-{MN+MK)2T.S-(MN-MK)2~] \ [S-{MU+MK)2J_S-(MN-MK)2~] 

l(s^-MNy-MK
2T-X+ (sV2+MNm ( 2S12(MN

2+MK2)-MYI,
2-S2 

V [>- {MN+MK)2T.s- (MN-MK)2y 
(9) 

[s- {MN+MK)2T.s- {MN-MK)21 
where 

f (s+MYl*
2) MYl*

2-MN
2 1 1 (MYl*

2-MN
2)2-MK

4 

X = (MYl*+MN)\MN
2 + + (MYl*

2-MN
2+MK

2)2 , (9a) 
1 2 3 6MYl*

2 J 6MF l* 

s+MYl*
2 MK

2 2MN(MYl*+MN) MN 
MN

2 + (MYI*
2-MN

2+MK2) 
2 3 3 3MF l* 

(MYI*
2-MN

2+MK2)2] . (9b) 
6MYl*

2 J 
The p contribution is given by 

-3/87TI Is- {MN+MK)2T_s- (MN-MKY] \ b - (MN+MK)2Xs~ {MN-MK)2y 

l^-MNf-M^Ji-X'+^+MNm / 2sM2 

+ ^ [>- (MN+MK)2Ts- {MN-MK)21 
-ei(i+ ) , (io) 

where The values of the p, a>, and Fi* coupling constants 
. „___ 0 . ___ 9 . . . . . . . . , .^ N have been calculated from the known data on p, 

X = -gKKPgNNP (2MN
2+2MK

2-2s-M2)/2MN, (10a) N*(ms) d e c a y w i d t h s a n d t h e electromagnetic form 
Y' = - 2 (gKKpgNNp+gKKpgNNp'), (10b) factors of the nucleons, by applying a unitary symmetry 

scheme.12 Here p, co, and i£* are taken as the members 
where g and gf refer to rationalized coupling strengths o f a v e c t o r m e s o n o c t e t a n d F i * t o g e t h e r w i t h ^ E*? 

for charge and magnetic moment couplings, respectively. a n d t h e n e w l y d i s c o v e r e d Qr, forms a Barvon decuplet. 
The co contribution is obtained by replacing the sub- T h e c a i c u i a t e d v a i u e s 0f t h e coupling strengths are 
script p by co throughout (10) and setting both the 
isospin factors equal to unity. gr1*KN2/^= (0.05), 

11 Following the strip approximation, Singh and Udgaonkar ' 
(Ref. 2) have shown that the high-energy contributions from the gKKpgNNp'/^ir— (2.25) , (11) 
two crossed channels are equivalent to a contribution from low 
energies in the direct channel. The latter again may be approxi- gKKcogNNoi/^— (1.68) , 
mated by the contributions from low-energy resonances. In the 
absence of any such resonances in the direct channel, we expect the gKKugNNco /47T = 0 . 
contributions of high energies in the crossed channels to be small, " : 
and so neglect them. See also L. A. P. Balazs, Phys. Rev. 134, 12 A. W. Martin and K. C. Wali, Nuovo Cimento 31, 1324 
£1315 (1964), (1964)-
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5. RESULTS AND DISCUSSION 

The two parameters Ri and R2 being thus determined, 
N(s) and D(s) are now known functions of energy. Then 
the scattering length a and effective-range parameter r 
are obtained from 

1 
-— (q COt5)threshold 

_/ReZ?(f)\ 

\ N(s) J. 
(12) 

and 

ir=\ —(qcotd) 
Idq2 J t 

r d /ReD(s)Yl 

Ldq\ N(s) / J 
• (13) 

.dq2\ N(s) '-is=(MN+MK) 

The calculated values for 1= 1 are 

^ = - 0 . 3 4 F , ^=0.25 F. 

An s-wave effective-range fit to the experimental K+—p 
scattering data by Goldhaber et a/.13 gives a1 =—0.29 
±0.015 F, and r1 = 0.S±0.1S F. The s-wave phase shift 
has also been calculated as a function of the laboratory 
momentum and compared against the experimental 
value of the above authors (Fig. 1). The agreement is 
quite good. 

For 1 = 0, the calculated values for the scattering 
length and effective range are a°= —0.38 F, r°=0.10 F. 
Goldhaber et al.u have analyzed the K+—d scattering 
data in a limited energy range, and obtained two sets of 
solutions for the s-wave phase shifts for 1=0. Our 
calculated values support the large s-wave solution (set 
B in Table II of Ref. 14). This solution is consistent 
with a scattering length of about —0.4 F. On the other 
hand, their set A solution and a similar solution obtained 
earlier by Rodberg and Thaler15 from K+ interaction in 
emulsion suggest values for scattering length and phase 
shifts much smaller16 than ours. However, it must be 
mentioned that the experimental data for this case are 
very meager and admit extremely large uncertainties, so 
that no reliable comparison can be made at present. 

The calculated values of the scattering lengths for the 
two isospin states are seen to be about the same, because 
the Fi* and 2 contributions to the s-wave amplitude 
partly cancel each other, and p contribution is small, so 

13 S. Goldhaber, W. Chinowsky, G. Goldhaber, W. Lee, T. 
O'Halloran, T. F. Stubbs, G. M. Pierrou, D. H. Stork, and H. K. 
Ticho, Phys. Rev. Letters 9, 135 (1962). 

14 W. Slater, D. H. Stork, H. K. Ticho, W. Lee, W. Chinowsky, 
G. Goldhaber, S. Goldhaber, and T. O'Halloran, Phys. Rev. 
Letters 7, 378 (1961). 

15 L. S. Rodberg and R. M. Thaler, Phys. Rev. Letters 4, 372 
(1960). 

16 M. M. Islam, Nuovo Cimento 20, 546 (1961), has obtained a 
fit to the small s-wave phase-shift data by restricting the /-channel 
contribution to the p pole alone. 
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FIG. 1. Plot of s-wave K-N phase shift for 1 = 1 against laboratory 
K momentum. The open circles represent experimental points. 

that the predominant contributions come from A and co 
exchange which contribute equally to both the isospin 
states. To check the sensitivity of the result on the 
choice of matching points, we have alternatively de
termined the residues by matching the amplitude and 
its derivative at ^=90 and .?= 104 separately. The 
values of the scattering length obtained for these two 
cases agree with the original value within 20%. 

In the present investigation, as in the earlier work of 
Costa et alP one comes across a spurious zero in the 
D(s) function, in the unphysical region. However, if we 
determine the residue at this pole, it turns out to be 
negative so that it does not correspond to any bound 
state in K-N system. This is similar to the effect that 
one observes in potential theory where for strong 
repulsion, pole approximations to the left cut always 
lead to the appearances of ghost states in the theory.18 
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